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Asymptotic statistics

Chapter 1: Introduction

Chapter 2: Stochastic convergence



Introduction

Approximate statistical procedures;

Asymptotic optimality theory;

Limitations.



Frequentist statistics

We study the statistical tools from an (empirical) frequentist point
of view.



Chapter 2: Stochastic convergence



Almost sure convergence

Definition

We say a sequence of random variables Xn converges almost surely
to X if

P
(

lim
n→∞

Xn = X
)

= 1.

This is denoted by
Xn

as→ X .



Convergence in probability

Definition

We say a sequence of random variables Xn taking values in a
metric space converges in probability to X if for all ε > 0

P (d(Xn,X ) > ε)→ 0.

This is denoted by

Xn
P→ X .



Weak convergence: Definition 1

Definition

We say a sequence of real valued random variables Xn converges
weakly to X if

P (Xn ≤ x)→ P (X ≤ x)

at every point where x 7→ P (X ≤ x) is continuous. We denote this
by

Xn  X .

Remark

Note that we can extend this to vector valued random variables by
defining that a vector v ≤ u iff vi ≤ ui for all i .
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Portmanteau Lemma

Lemma (Portmanteau)

For random vectors Xn and X the following are equivalent

Xn converges weakly to X ;

E[f (Xn)]→ E[f (X )] for all bounded continuous functions f ;

E[f (Xn)]→ E[f (X )] for all bounded lipschitz functions f ;

lim inf E[f (Xn)] ≥ E[f (X )] for all nonnegative, continuous
functions f ;

lim inf P(Xn ∈ G ) ≥ P(X ∈ G ) for every open set G;

lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for every closed set F ;

P (Xn ∈ B)→ P (X ∈ B) for all Borel sets B with
P(X ∈ δB) = 0, where δB is the boundary of B.



proof sketch, step 1 i⇒ ii

Claim

There exists a set C such that C is dense and rectangles I with
corners in C are continuity sets.

Let ε > 0. Pick a rectangle I with all their corners in C such that
P (X ∈ I ) > 1− ε. Since I is compact, f is uniformly continuous
on I , and hence we can partition I into finitely many sets Ij such
that f varies at most ε on each Ij , and each Ij has corners in C .
Pick xj arbitrary points in Ij , then |f (x)− f (xj)| ≤ 2ε for all x ∈ Ij .
Define fε =

∑
j f (xj)1Ij . Then

‖Ef (Xn)− Efε(Xn)‖ ≤ 2ε+ P(Xn 6∈ I )

‖Ef (X )− Efε(X )‖ ≤ 2ε+ P(X 6∈ I ) ≤ 2ε
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proof cont’d

‖Ef (Xn)− Efε(Xn)‖ ≤ 2ε+ P(Xn 6∈ I )

‖Ef (X )− Efε(Xn)‖ ≤ 2ε+ P(X 6∈ I ) ≤ 3ε

Note that for large enough n, we can make P(Xn 6∈ I ) < 2ε.
Moreover

‖Efε(Xn)− Efε(X )‖ ≤
∑
j

‖P(Xn ∈ Ij)− P(X ∈ Ij)‖|f (xj)| → 0

Hence, ‖Ef (Xn)− Ef (X )‖ ≤ 7ε for n large enough, for all ε > 0.
The rest of the proof is left to read in the book.



Weak convergence: Definition 2

Definition

We say a sequence of random variables Xn converges weakly to X
if for every bounded continuous real valued function

Ef (Xn)→ Ef (X ).



Continuous mapping

Lemma

Let g : Rk 7→ Rm be continuous at every point of a set C sch that
P(X ∈ C ) = 1.

If Xn  X, then g(Xn) g(X );

If Xn
P→ X, then g(Xn)

P→ G (X );

If Xn
as→ X, then g(X )

as→ G (X ).



Tightness and uniform tightness

Tightness is the corresponding concept of being bounded for a
random variable

Definition

We say a random variable X is tight if for every ε > 0 there exists
a compact set C such that

P (X 6∈ C ) < ε

Every random vector is tight.

Definition

A set of random variables {Xα : α ∈ A} is called uniformly tight if
for all ε > 0 there exists a compact set C such that

P(Xα 6∈ C ) < ε∀α ∈ A.
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Heine-Borel for random variables

Theorem (Prohorov’s theorem)

Let Xn be random vectors in Rk .

If Xn  X for some X , then {Xn : n ∈ N} is uniformly tight;

If Xn is uniformly tight, then there exists a subsequence of
Xnj  X as j →∞, for some X .



Relations between convergence

Theorem

Let Xn,X ,Yn,Y be random vectors and c a constant. Then

Xn
as→ X implies Xn

P→ X;

Xn
P→ X implies Xn  X;

Xn
P→ c if and only if Xn  c;

if Xn  X and d(Xn,Yn)
P→ 0, then Yn  X;

if Xn  X and Yn
P→ c, then (Xn,Yn) (X , c);

if Xn
P→ X and Yn

P→ Y , then (Xn,Yn)
P→ (X ,Y ).
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Slutsky

Lemma

Let Xn,X ,Yn be random variables. If Xn  X and Yn  c for a
constant c, then

Xn + Yn  X + c;

YnXn  cX ;

Y−1n Xn  c−1X provided that c is invertible.

Proof.

Previous theorem implies (Xn,Yn) (X , c). Now apply
continuous mapping to each of the maps and note that they are
continuous.
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Stochastic o and O Symbols

Xn = oP(Rn) means Xn = YnRn andYn
P→ 0;

Xn = OP(Rn) means Xn = YnRn andYn bounded in probability


