Asymptotic statistics Chapter 1 and 2: Introduction and weak convergence

Stefan Franssen, Msc

October 5, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Organisation

- Introduction
- Overal set up
- Rota for presenting

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Discussion

One by one

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Goal

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

■ Goal

History

- Goal
- History
- Weekly presentation

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Rota Link

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Questions?

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Asymptotic statistics

- Chapter 1: Introduction
- Chapter 2: Stochastic convergence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Approximate statistical procedures;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Asymptotic optimality theory;
- Limitations.

We study the statistical tools from an (empirical) frequentist point of view.

Chapter 2: Stochastic convergence

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

We say a sequence of random variables X_n converges almost surely to X if

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1.$$

This is denoted by

$$X_n \stackrel{\mathrm{as}}{\to} X.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We say a sequence of random variables X_n taking values in a metric space converges in probability to X if for all $\epsilon > 0$

$$\mathbb{P}\left(d(X_n,X)>\epsilon\right)\to 0.$$

This is denoted by

$$X_n \xrightarrow{P} X.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say a sequence of real valued random variables X_n converges weakly to X if

$$\mathbb{P}\left(X_n\leq x\right)\to\mathbb{P}\left(X\leq x\right)$$

at every point where $x\mapsto \mathbb{P}\left(X\leq x
ight)$ is continuous. We denote this by

 $X_n \rightsquigarrow X.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We say a sequence of real valued random variables X_n converges weakly to X if

$$\mathbb{P}\left(X_n\leq x\right)\to\mathbb{P}\left(X\leq x\right)$$

at every point where $x\mapsto \mathbb{P}\left(X\leq x
ight)$ is continuous. We denote this by

 $X_n \rightsquigarrow X$.

Remark

Note that we can extend this to vector valued random variables by defining that a vector $v \le u$ iff $v_i \le u_i$ for all *i*.

Lemma (Portmanteau)

For random vectors X_n and X the following are equivalent

- X_n converges weakly to X;
- $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded continuous functions f;
- $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded lipschitz functions f;
- lim inf $\mathbb{E}[f(X_n)] \ge \mathbb{E}[f(X)]$ for all nonnegative, continuous functions f;
- lim inf $\mathbb{P}(X_n \in G) \ge \mathbb{P}(X \in G)$ for every open set G;
- lim sup $\mathbb{P}(X_n \in F) \leq \mathbb{P}(X \in F)$ for every closed set F;
- $\mathbb{P}(X_n \in B) \to \mathbb{P}(X \in B)$ for all Borel sets B with $\mathbb{P}(X \in \delta B) = 0$, where δB is the boundary of B.

proof sketch, step 1 $\mathrm{i} \Rightarrow \mathrm{ii}$

Claim

There exists a set C such that C is dense and rectangles I with corners in C are continuity sets.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Claim

There exists a set C such that C is dense and rectangles I with corners in C are continuity sets.

Let $\epsilon > 0$. Pick a rectangle I with all their corners in C such that $\mathbb{P}(X \in I) > 1 - \epsilon$. Since I is compact, f is uniformly continuous on I, and hence we can partition I into finitely many sets I_j such that f varies at most ϵ on each I_j , and each I_j has corners in C. Pick x_j arbitrary points in I_j , then $|f(x) - f(x_j)| \le 2\epsilon$ for all $x \in I_j$. Define $f_{\epsilon} = \sum_j f(x_j) \mathbb{1}_{I_j}$. Then

$$\begin{split} \|\mathbb{E}f(X_n) - \mathbb{E}f_{\epsilon}(X_n)\| &\leq 2\epsilon + \mathbb{P}(X_n \not\in I) \\ \|\mathbb{E}f(X) - \mathbb{E}f_{\epsilon}(X)\| &\leq 2\epsilon + \mathbb{P}(X \not\in I) \leq 2\epsilon \end{split}$$

$$egin{aligned} &\|\mathbb{E}f(X_n)-\mathbb{E}f_\epsilon(X_n)\|\leq 2\epsilon+\mathbb{P}(X_n
ot\in I)\ &\|\mathbb{E}f(X)-\mathbb{E}f_\epsilon(X_n)\|\leq 2\epsilon+\mathbb{P}(X
ot\in I)\leq 3\epsilon \end{aligned}$$

Note that for large enough n, we can make $\mathbb{P}(X_n \notin I) < 2\epsilon$. Moreover

$$\|\mathbb{E}f_{\epsilon}(X_n) - \mathbb{E}f_{\epsilon}(X)\| \leq \sum_j \|\mathbb{P}(X_n \in I_j) - \mathbb{P}(X \in I_j)\||f(x_j)| \to 0$$

Hence, $||\mathbb{E}f(X_n) - \mathbb{E}f(X)|| \le 7\epsilon$ for *n* large enough, for all $\epsilon > 0$. The rest of the proof is left to read in the book.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

We say a sequence of random variables X_n converges weakly to X if for every bounded continuous real valued function

 $\mathbb{E}f(X_n) \to \mathbb{E}f(X).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Continuous mapping

Lemma

Let $g : \mathbb{R}^k \mapsto \mathbb{R}^m$ be continuous at every point of a set C sch that $\mathbb{P}(X \in C) = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- If $X_n \rightsquigarrow X$, then $g(X_n) \rightsquigarrow g(X)$;
- If $X_n \xrightarrow{P} X$, then $g(X_n) \xrightarrow{P} G(X)$;
- If $X_n \stackrel{as}{\to} X$, then $g(X) \stackrel{as}{\to} G(X)$.

Tightness and uniform tightness

Tightness is the corresponding concept of being bounded for a random variable

Definition

We say a random variable X is tight if for every $\epsilon > 0$ there exists a compact set C such that

 $\mathbb{P}(X \not\in C) < \epsilon$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tightness is the corresponding concept of being bounded for a random variable

Definition

We say a random variable X is tight if for every $\epsilon > 0$ there exists a compact set C such that

 $\mathbb{P}(X \not\in C) < \epsilon$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Every random vector is tight.

Tightness is the corresponding concept of being bounded for a random variable

Definition

We say a random variable X is tight if for every $\epsilon > 0$ there exists a compact set C such that

$$\mathbb{P}\left(X \not\in C\right) < \epsilon$$

Every random vector is tight.

Definition

A set of random variables $\{X_{\alpha} : \alpha \in A\}$ is called uniformly tight if for all $\epsilon > 0$ there exists a compact set C such that

 $\mathbb{P}(X_{\alpha} \notin C) < \epsilon \forall \alpha \in \mathcal{A}.$

Theorem (Prohorov's theorem)

Let X_n be random vectors in \mathbb{R}^k .

- If $X_n \rightsquigarrow X$ for some X, then $\{X_n : n \in \mathbb{N}\}$ is uniformly tight;
- If X_n is uniformly tight, then there exists a subsequence of $X_{n_i} \rightsquigarrow X$ as $j \rightarrow \infty$, for some X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let X_n, X, Y_n, Y be random vectors and c a constant. Then $X_n \stackrel{as}{\to} X$ implies $X_n \stackrel{P}{\to} X$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let X_n, X, Y_n, Y be random vectors and c a constant. Then

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $X_n \xrightarrow{as} X$ implies $X_n \xrightarrow{P} X$;

•
$$X_n \xrightarrow{P} X$$
 implies $X_n \rightsquigarrow X$;

Let X_n, X, Y_n, Y be random vectors and c a constant. Then

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $X_n \stackrel{as}{\to} X$ implies $X_n \stackrel{P}{\to} X$;

•
$$X_n \xrightarrow{P} X$$
 implies $X_n \rightsquigarrow X$;

•
$$X_n \xrightarrow{P} c$$
 if and only if $X_n \rightsquigarrow c$;

Let X_n, X, Y_n, Y be random vectors and c a constant. Then

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $X_n \xrightarrow{as} X$ implies $X_n \xrightarrow{P} X$;
- $X_n \xrightarrow{P} X$ implies $X_n \rightsquigarrow X$;

•
$$X_n \xrightarrow{P} c$$
 if and only if $X_n \rightsquigarrow c$;

• if $X_n \rightsquigarrow X$ and $d(X_n, Y_n) \xrightarrow{P} 0$, then $Y_n \rightsquigarrow X$;

Let X_n, X, Y_n, Y be random vectors and c a constant. Then

- $X_n \stackrel{as}{\to} X$ implies $X_n \stackrel{P}{\to} X$;
- $X_n \xrightarrow{P} X$ implies $X_n \rightsquigarrow X$;
- $X_n \xrightarrow{P} c$ if and only if $X_n \rightsquigarrow c$;
- if $X_n \rightsquigarrow X$ and $d(X_n, Y_n) \xrightarrow{P} 0$, then $Y_n \rightsquigarrow X$;
- if $X_n \rightsquigarrow X$ and $Y_n \xrightarrow{P} c$, then $(X_n, Y_n) \rightsquigarrow (X, c)$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let X_n, X, Y_n, Y be random vectors and c a constant. Then $X_n \stackrel{as}{\to} X \text{ implies } X_n \stackrel{P}{\to} X;$ $X_n \stackrel{P}{\to} X \text{ implies } X_n \rightsquigarrow X;$ $X_n \stackrel{P}{\to} c \text{ if and only if } X_n \rightsquigarrow c;$ $\text{if } X_n \rightsquigarrow X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0, \text{ then } Y_n \rightsquigarrow X;$ $\text{if } X_n \rightsquigarrow X \text{ and } Y_n \stackrel{P}{\to} c, \text{ then } (X_n, Y_n) \rightsquigarrow (X, c);$ $\text{if } X_n \stackrel{P}{\to} X \text{ and } Y_n \stackrel{P}{\to} Y, \text{ then } (X_n, Y_n) \stackrel{P}{\to} (X, Y).$

Lemma

Let X_n, X, Y_n be random variables. If $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$ for a constant c, then

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$X_n + Y_n \rightsquigarrow X + c;$$

•
$$Y_n X_n \rightsquigarrow cX;$$

•
$$Y_n^{-1}X_n \rightsquigarrow c^{-1}X$$
 provided that c is invertible.

Lemma

Let X_n, X, Y_n be random variables. If $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$ for a constant c, then

$$X_n + Y_n \rightsquigarrow X + c;$$

•
$$Y_n X_n \rightsquigarrow cX;$$

•
$$Y_n^{-1}X_n \rightsquigarrow c^{-1}X$$
 provided that c is invertible

Proof.

Previous theorem implies $(X_n, Y_n) \rightsquigarrow (X, c)$. Now apply continuous mapping to each of the maps and note that they are continuous.

 $\begin{array}{ll} X_n = o_P(R_n) & \mathrm{means} & X_n = Y_n R_n & \mathrm{and} \, Y_n \stackrel{P}{\to} 0; \\ X_n = O_P(R_n) & \mathrm{means} & X_n = Y_n R_n & \mathrm{and} \, Y_n \text{ bounded in probability} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ